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preselected value is
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where p and o are the estimated median log lifetime and estimated logarithmic

standard deviation of the failed sample distribution, and t(6) _ is the

Student-t distribution with n - 1 degrees of freedom associated with the

confidence coefficient 8. On the further assumption that the median log life-

time foilows an Arrhenius dependence but that the logarithmic variance is

temperature-insensitive, the aging to failure of n devices at several elevated

temperatures is used to infer the probability that a device operated at some
lower temperature will fail before a preselected time. The probability is

P[ln t 4 uN- t() n-2°(1 + 1 1/21 6
Tin

where a is once again our best estimate of the logarithmic standard

deviation, and UN is the estimated median log lifetime extrapolated to the
desired operating temperature employing the Arrhenius relation. The
statistical efficiency of the device distribution during accelerated aging is

represented by

n - (DL 
2 + 1)

- 1

The experimental uncertainty increases with the difference between the

accelerated temperature range and the normal operational temperature and is
conveniently expressed by an experimental lever arm, L, which is analogous to
the inaccuracy of a rifle decreasing as the ratio of firing range to barrel
length. The D-factor accounts for the statistical effectiveness of the device

distribution at the accelerated temperatures. Devices that failed at the
middle of the accelerated temperature range are statistically inefficient.

The results of this statistical analysis are applied to several typical
accelerated temperature-aging programs to demonstrate its application.
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I. INTRODUCTION

Although accelerated temperature stressing of semiconductor devices is an

accepted and widely employed technique for assessing the reliability of

semiconductor devices,1 '2 it appears that a statistical error analysis of this

procedure is not available. The purpose of this work is to partially remedy

this deficiency. The goal of this program is easily stated: A number of

devices taken from a distribution are operated at several elevated

temperatures to induce failure in all devices within a reasonable time.

Assuming general characteristics of the device failure probability density

function (pdf) and its temperature-dependence, we estimate the expected

cumulative failure function (cff) for devices in normal operation. By

estimated cff, we mean our best estimate, based on statistical inference, of

the average probability of a random device (taken from the same distribution

but operated at a normal temperature) failing as a function of time.

Section II contains a brief review of the general mathematical formalism

usually employed in semiconductor reliability discussions. Three failure

pdf's ot particular usefulness to this analysis--exponential, normal, and

lognormal-are discussed. Our particular interest is in highly complex

electronic systems intended for long-life space applications. In this

application and for similar ground-based systems, it is not the expected

failure probability density, at times comparable to the median lifetime (*1O 7

to 108 hr) of the device that is important, but the cff, at times orders of

magnitude less, at times comparable to the desired system useful life (mlO 4 to

I05 hr). A simplified cost analysis to justify this assertion is included at

the end of Section II. A brief review of accelerated temperature aging is

presented, and the assumptions concerning the general characteristics of the

failure pdf, which are fundamental to this analysis, are emphasized.

This analysis is carried out in several steps, each more difficult than

the preceding. We first consider the case of operating the devices to failure

at a single temperature. On the basis of the experimental observed failure

times and the assumption of a lognormal pdf, we estimate the lifetime

5



distribution of the original population from the failed sample distribution.

The maximum-likelihood method, combined with the chi-squares and the Student-t

distributions, is employed to estimate the median lifetime, logarithmic

variance, and their associated distributions, as well as the average

cumulative failure function.

This procedure is repeated for a generalized accelerated-temperature-

stressing experiment, and these results are first used to analyze a simple

two-temperature stress test because the physical understanding Is not obscured

by the mathematics and also because such a program is statistically very

efficient within the constraints of the accelerated temperature range or

equivalently within the constraint of limited test time. Various other sample

distributions within the elevated temperature range are considered, and it is

shown that samples near the center of the accelerated-temperature region

contribute (statistically) inefficiently to the accuracy of the extrapolated

estimates. The final result of this analysis is an estimate of the average

cumulative failure function of a device operated at the actual operating

temperature. This estimate is based on the sample failure distribution of a

thermally accelerated aging test with no prior knowledge of either the median

lifetime or its logarithmic variance assumed.

6
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II• BACKGROUND

The reliability of a given device is conveniently described by its

failure pdf, which, by convention is designated f(x), where x is a random

variable. The differential probability that a randomly chosen device will

fail between x and x + Ax is f(x)Ax. The cff, F(t), is the probability that a

given device will have failed before t and is,

F(t) - /tf(x)dx (1)

The survival probability is one minus the cff, when one assumes, as is done in

the present analysis, that a device can only be in one of two states, i.e.,

fully operational or failed. The failure rate, X(t), is

f(t)
[I [ - F(t)] (2)

A given pdf can be characterized by many different parameters, but only

three of these will be employed in this analysis: mean lifetime, median

lifetime, and the variance of the distribution. The mean lifetime for a given

pdf is designated

- t -

S tf(t)dt(



and represents approximately the average life expectancy of a large number of

aevices taken for the distribution under discussion. The variance is a

measure of the "spread" of the lifetimes and is defined as

a2 f (t - i-)2 f(t)dt (4)

0

In this case, the variance is defined with respect to "linear" time as the

random variable. Although this is the usual designation, the choice of the

random -ariable is not unique. With semiconductor devices, it is convenient

to specify the variance with respect to the logarithm of operating time as the

random variable. The median lifetime is similar to the mean lifetime except

that it represents the time at which the cff is equal to 0.5. If a large

sample of devices were operated to failure, the median lifetime or log

lifetime is approximately equal to the time at which one-half of the devices

have failed.

The general properties of three failure pdf which are of particular

interest to the present analysis are briefly reviewed.

The exponential failure pdf is

f(t) - X exp(-Xt) (5)

where A is a constant. For any true pdf, we have

Jf(t)dt - 1 (6)
0

8



The cff assumes a simple form

F(t) f 1 - exp(-Xt) (7)

M Xt for Xt << 1 (8)

The failure rate is constant and equal to A. The mean lifetime and its

standard deviation are both equal to the reciprocal of the constant failure

rate.

The normal failure pdf is

f(t) 1 7it - 2(9)1/-2 e~p[ -2------J)(9
o(2ir)

where P is the mean lifetime and a2 the variance. Unlike the exponential

distribution, the median lifetime is equal to the mean lifetime. The cff

F(t) - f exp[- 2 - ' ()- Cy 2 ) dt ](10)

cannot be expressed in a closed form and must be evaluated by using a

tabulation of the standard normal distribution

9
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F(a) = 1 (ap/F~)-(2w) 1/2 exp(-. 2 y2 dy (11)

Probability graph paper (e.g., K & E/46 8003) is particularly useful when

working with normal distributions. When the cff is plotted on this graph

paper, a straight line results. Both the median and the mean lifetime occur

at cff - 0.5 (i.e., 50%) and

a - t16  (12)

where t16 is the time corresponding to F(t) - 0.16. The normal pdf is

symmetric about U, and approximately 68% of the failures occur within a of the

median lifetime.

Under carefully controlled conditions of elevated temperature and applied

bias, the failure pdf of semiconductor devices is found 1 '2 to follow a

lognormal pdf expressed as

f 1 ln(t/TM) 2
f(t) - exp[- (- ) (to( 2w) I/

In this expression, TM is the median lifetime, and a is the logarithmic

standard deviation. The lognormal distribution is similar to the normal pdf

except that t + In t. In fact, if we define

x - in t (14)

10



we have

f(x) - 2 exp[.(.-' ] (15)
a0w)

a normal distribution employing not a linear time scale but a logarithmic time

scale. By working in logarithmic time, all the properties of the normal

distribution apply to the lognormal pdf. The time interval [t, t + At]

becomes [x, x + Ax] - [In t, In t + At/t]. The cff is

x 12

F(x) - 12 exp[- 1'_- (16)- (2( )1/2 2- 0 (6

which, when plotted on probability graph paper using the logarithm of time,

results in a straight line. This straight line crosses the 50% probability at

x - P; the median of the log lifetime distribution. The median lifetime is,

of course,

TM M exp p (17)

In a manner similar to a normal distribution, we have approximately

T M

SU -x 16  lnt-16) (18)

i 16
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where x16 and t1 6 correspond to the value of x and of t where 16% of the

cumulative failure occurs. Approximately 68% of the failure occurs between

x16 and x84 (i.e., 2a, centered around the median lifetime).

Expressions for the real-time (i.e., linear) mean lifetime and variance

(i.e., Eqs. (3) and (4)] are avallable3 but serve no useful purpose in the

present analysis. In fact, we emphasize that knowledge of the failure pdf

near the mean lifetime is of little value in analyzing the reliability of

complex systems intended for long-life space applications or other similarly

complex ground-based systems. Of prime importance is the failure rate at

times much less than the average lifetime. In general, with a system

consisting of n components, one desires to know the cff near the 100/n

percentage level. For example, a system consisting of 104 identical

components in series would be expected to have a high probability of failure

at a time when the average device eff is 10-4.

If we look at a total system from the viewpoint of cost-effectiveness, it

is not the failure pdf or cff that one is interested in, but rather the

integral of the cff over the service life. Consider a system with a specified

useful life of ts . Let the loss in some monetary units for the systems not

working in the time interval [t, t + At] be R(t)At. The expected loss from

failure of the ith component is

ALs  R(t)Fi(t)dt (19)
0

where Fi(t) is the cff for the ith component. The loss rate, of course,

depends on the system-intended employment and reliability. Assuming a

constant "usefulness" throughout the system lifetime, the loss rate is

expected to be proportional to the survival probability of the system

excluding the ith component. Assuming a high survival probability for the

total system, the loss due to the failure of any component is independent of

12



the failure of other components. If the rate of loss R(t) can be reasonably

represented as a constant, R, we estimate

'Ls  f R Ft(t)dt (20)
0

or the total estimated loss from all components, assuming EFi(t) << I for t <

ts, is the summation of the individual losses and is

Ls = f RFi(t)dt (21)
0

For an exponential pdf, this takes a particularly simple form assuming

A (t <<< 1, and we write

L -- t 2 1 X (22)
2 2 s i

i.e., one simply sums the various failure rates. For a lognormal

distribution, a much more complex situation results because a single lognormal

cff, let alone the sum of lognormal cff's, cannot be integrated to yield a

closed form solution.

Thus far, we have been speaking as if we knew the failure pdf

accurately. In practice, we do not know the failure pdf exactly in fact, in

many cases, we do not even know the functional form of the pdf. Only by

sampling from the distribution can we estimate the correctness of an assumed

functional form, and only when this is established are we in a position to

estimate the parameters associated with the failure pdf. Knowing the

functional form of the failure pdf, one estimates the expected cff from the

sample distribution and not the exact cff. In the present analysis, it is

important to distinguish between the parameters that characterize an exact pdf

and the corresponding parameters estimated from sampling.

13



III. ACCELERATED TEMPERATURE TESTING

Because semiconductor components have excellent reliability, it is very

costly to adequately determine the failure pdf under actual operating

conditions. This excessive cost is associated with the large sample of

devices that must be operated for long test times to adequately predict the

failure pdf with a reasonable confidence level. Even if the cost of such a

reliability test is not a constraint, the required total test time is usually

a constraint. If one desires to predict the reliability of an electronic

system with a desired system life of ts, one must determine the failure rate

at times comparable to t., which for space applications can be ten years or

longer. If the failure pdf is exponential, one can decrease the total test

time by increasing the sample size, since in this special case, it is the

total operating time of the device that establishes the accuracy of predicting

the failure pdf. When the functional form of the failure pdf is unknown, it

is dangerous to assume that one can trade sample size against test duration.

Because of this consideration, one often resorts to an accelerated

temperature-stress program to estimate the reliability of semiconductor

components. The success of such a program is based on the remarkable

experimental observations1 ,2 that for a single failure mechanism

1. The failure pdf at a constant temperature and applied electrical
stress is lognormal.

2. The logarithmic variance is independent of temperature.

3. The median failure time follows an Arrhenius dependence expressed as

TM = TO exp(kT) (23)

where ro and AE, the activation energy, depend on the electrical stress but

not on temperature. A typical accelerated test is schematically shown in

Fig. 1, in which a small sample of devices are operated to complete failure at

_1j

.m ----' .-- w ; . .. ;. ,-15 f' pj. ~ n - - ~ . .. -



106-

105

E 0.794eV

0
0J

-a

LU 0

00

Oj (C Tmtr T h)o 0
00

0 227 100 137 0.9

102 194 364 370 1.01
8 162 1320 2234 1.05

0

I I I I I

2.0 2.2 2.4 2.6 2.8 3.0

10001T IK 1)

Fig. 1. Arrhenius Presentation of Accelerated Temperature Aging. This
presentation was constructed by picking 10 random lifetimes at three
different temperatures from a lognormal distribution whose parameters
are P - in 1I10" exp (0.794/kT)] and a - 1.00. The exact median
lifetimes at the various temperatures are listed, as well as the
sample mean lifetime and the logarithmic standard deviation. The
solid line represents the Arrhenius depndence of the exact median
lifetime, which extrapolates to TM 10 hr at an operating
temperature of 60*C.
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three different temperatures. The logarithms (to the base 10) of the

experimentally measured failure time are plotted as a function of the

reciprocal of the absolute "Junction" temperature. The scatter in the failure

times at constant junction temperature is the result of the random

distribution of failure times as expressed by their failure pdf. The average

increase in the failure time with increasing reciprocal absolute junction

temperature is because their median lifetime follows an Arrhenius dependence.

If one could take a given device to failure at an accelerated

temperature, restore the device to its original condition, and then repeat the

failure at several different temperatures, the log of the observed failure

times plotted as a function of the reciprocal junction temperature would be

expected to follow a straight line characterized by a specific T0 and AE.

Repeating this experiment with other devices from the same uniform pdf would

result in a series of parallel lines, indicating constant failure activation

energy. The vertical shift between these Arrhenius dependences is caused by

the scatter in the pre-exponential factor, To. Since the pre-exponential

factor in an Arrhenius dependence Is relatively temperature insensitive, the

associated logarithmic variance is also temperature insensitive.

Thermally accelerated aging results are typically analyzed as follows:

The failure times observed at a given temperature are plotted on probability

paper to determine whether the sample can reasonably be assumed to have come

from a distribution whose pdf is lognormal. One's confidence in being able to

make such a judgment, of course, increases with the sample size failed at any

given temperature. If the failures at each temperature follow a lognormal

pdf, the logarithmic variance at each accelerated temperature is estimated to

determine whether it is temperature independent. As before, this decision is

greatly aided by a large number of failures at each temperature. The

logarithmic variance usually ranges from 0.5 to 2.0.* A variance of less than

Reasonable care must be exercised in this type of analysis because of rapid
interchange that occurs between naperian base (natural) logarithm and
logarithms to the base 10. The natural logarithm is used for o in this work.

17
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1.0 is characteristic of a reasonably mature and well-controlled process,

whereas a variance of greater than 2.0 is indicative of an immature process

and is normally rejected out of hand.I Having established a reasonably low

variance that is supposedly temperature insensitive, we plot the results as

indicated in Fig. 1 to decide whether the failures can be fitted with a single

activation energy. One's confidence in making such a judgment once again

increases with sample size. If it is decided that a single activation energy

is Justified, constants To and AE are found that best describe the data. With

these constants, and the logarithmic variance, one can then determine the most

appropriate pdf for any desired operating temperature.

This common procedure has a serious flaw that should be emphasized. The

failure pdf is estimated as

1 ln
f( -t)i 1/2exp[- f ) 2 (24)

n (2w)1/2 a

where PN and ;2 are the experimenter's best estimate of the extrapolated

median log lifetime and the variance. As such, it estimates the "median" cff

but not the "average" cff, which can be very different, especially for times

much shorter than the extrapolated median lifetime. The important distinction

between "median" and "average" estimated eff is the primary motivation of this

analysis and is discussed in great detail later.

Our analysis follows the standard treatment given in many books on the

theory of statistics. The authors' preference is the early edition of Mood

(3]. An excellent bibliography on the theory of statistics is presented in

Ref. (4]. An extensive discussion of the lognormal distribution has been

provided by Aitchison and Brown (5].

Jordan [61 presented a comprehensive review of the lognormal failure

distribution to the analysis of semiconductor component failure. His analysis

differed from the present work in that he confined his attention to estimating

the statistical error associated with the median lifetime and the logarithmic

18



variance from a sample of devices all aged to failure at a constant stress

temperature. Our primary intention is to estimate the error associated with

extrapolating thermally accelerated failures to a lower operating temperature.

An extensive body of literature on the statistical analysis of

accelerated stress testing has been contributed by the General Electric (GE)

Research and Development Center staff. This work does not appear to be widely

discussed within the semiconductor device reliability community as is evident

in that it is not referenced in 111, 121, and [6]. Perhaps the explanation

for this unfortunate oversight is that the GE group did not employ accelerated

temperature aging of semiconductor device results as a vehicle to illustrate

the application of theoir statistical analysis. Regardless of what test

results were used, their assumptions (i.e., lognormal pdf/Arrhenius-dependent

median log lifeti v.,) are the same as commonly employed in semiconductor device

reliability discusv.'is, and their work is, therefore, directly applicable.

The GE atulySis is conveniently separated into two parts; complete and

censored data. In Nelson's early work [71, the analysis of accelerated

temperature aging to complete failure was considered in greater detail than

given in Ref. [8]. His main interest was to estimate the confidence limits at

the extrapolated median lifetime and the associated standard deviation.

However, our main interest is to estimate the probability that a device will

fail at a time much less than the extrapolated median lifetime, a subject

given only cursory consideration by Nelson. This difference in emphasis was

motivated by the final application of the results. We are interested in

highly complex systems where the failure rates at times much less than the
/

median lifetime are important whereas Nelson's interest appears to have been

in systems with few components, and, therefore, failure rates near the median

lifetime are emphasized. Regardless of this difference in emphasis between

the present work and the previous accelerated-aging analysis, there are no

basic differences or conflict because they both follow the standard linear

regression analysis.

In more recent work from the GE group, the analysis of censored data is

considered 191. An example of censored data in connection with accelerated-

19
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1.1

temperature-stress testing would be where only the firs4 five failure times at

each temperature would be available in the experiment discussed in connection

with Fig. 1. The analysis of censored data is much more complex than the

problem of complete failure data. The subject of censored data is usually

described in more advanced probability and statistical books, such as Kendall

and Stuart's second volume [101. However, the important subject of the

analysis of censored, accelerated-aging data is outside our present objective.

The correctness of an accelerated-temperature-aging program depends on

systematic and statistical errors. Systematic errors can seriously compromise

the effectiveness of an accelerated stress program. A lower activation energy

failure mechanism invalidates extrapolating the higher temperature failures to

lower temperatures. Although the authors recognized that a thermally

accelerated stress program is very prone to systematic errors, they have

confined this analysis to statistical errors. In this context, the results of

this analysis will provide necessary but, of course, not sufficient criteria

to help determine whether devices from a particular lot, a sample of which was

subjected to thermally accelerated aging, should be installed in a particular

system. The conclusions of this work are valid only under the following

assumptions:

1. The failure pdf is described by single lognormal distribution.

2. The lognormal variance is independent of temperature.

3. The median lifetime follows an Arrhenius dependence whose pre-
exponential factor and activation energy are independent of
temperature.

It is recognized that these assumptions apply only to an unbiased, i.e.,

electrically, as opposed to statistically, accelerated stress program and that

the lifetimes should be determined from a biased accelerated-temperature

stress program. The above assumptions are too restrictive in the sense that

if the bias dependence of a, To , and AE are kept constant during the

accelerated stressing and equal to the values at the operational level, the

results of this analysis would also apply to a biased accelerated stress

program. The authors have chosen not to include the biased accelerated stress

20



assumption not because they feel it is invalid, but because they wish to

emphasize the importance of carefully examining the implication of electrical

bias during accelerated stress testing. Also, the assunption of a single

lognormal pdf rules out the possibility of the existence of a small percentage

of early failures.
1
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IV. STATISTICAL ANALYSIS OF ACCELERATED TEMPERATURE AGING

In a single-temperature test, n devices are operated until they all fail.

Based on the n different failure times experimentally observed, one desires to

estimate the population distribution from this sample distibution. Establish-

ing the validity of an assumed functional form for the failure pdf is outside

the scope of this analysis and we proceed directly to estimating the lognormal

parameters from the experimentally observed failure times, TI. T T 3... This

will be done by the commonly employed maximum likelihood method. The results

of this analysis of a single-failure temperature closely follows the analysis

of Jordan4 and is included here both for completeness and for its usefulness

in introducing the more complex analysis to follow.

The experimental observed failure times are converted to the correspond-

ing logarithmic X1 , X2 , X3... , where each of these samples is from a distri-

bution whose median value and variance we wish to estimate. In the maximum-

likelihood method, one designates the deviation of the sample's values from

the median value and forms the summation

V If(X i - (25)

or

ln Y - nln a()112] _) (Xi - u)2 (26)202

where the summation is performed over the complete sample distribution and is

referred to as the log-likelihood function. This function contains all the

information available, i.e., the assumed pdf functional form and the

experimental results, and, therefore, represents a reasonable starting point

in any statistical analysis. In the method of maximum likelihood, it is

assumed that reasonable estimators for p and o are the values p and o, which

maximize the maximum-likelihood function or, more conveniently, the log-

.likelihood function.
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Equating to zero the derivatives of the log-likelihood function with

respect to both p and a provides the desired point estimators, which are

n Yx 1 (27)

and

a j(XI _ x ) 2  (28)

The estimator for the median value is unbiased; a2 is negatively biased but

consistent, i.e., consistent in that in the limit of large sample size

a + a. The best estimator of a is, of course,

a I (X _)2 (29)

If we know a exactly, we can use Eq. (27) and the self-reproductive

property of normal populations to estimate the distribution of the median

value as

______-_ 1 _ -]2
1 (2w)1/2 exp[--2 --o') ] (30)

where

2
2 a2

a --- (31)

and is commonly referred to as the standard deviation of the mean. This

equation expresses the simple truth that the error in the estimated median

value follows a normal distribution whose variance decreases linearly with

sample size. If a large number of workers were to repeat this experiment,

their composite results for V would follow the above expression except that

their median jwould be nearly equal to the exact v because of the large total

sample size involved. The variance in the reported values of 0 from all these

workers would be nearly equal to the variance expressed in Eq. (31).
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The confidence in one's ability to predict a from the sample distribution

can be estimated by employing the well-known chi-square pdf. For a normal

distribution, the random variable

2

2 L'(i- )

X fi 2 (32)

a

has the chi-square distribution with n-i degrees of freedom. * The probability
2

that a randomly chosen value of X is within some interval (a,b) Is

P{a < - I(X i - 112 = b i  fX 2 )dX2 (33)
a a

or

-2 - 2
P- g a < =6 (34)

b a

where 6 can be found from cumulative chi-square distribution tables once the

desired confidence interval is specified.

Knowing neither U nor a, one can determine the expected uncertainty in

u by employing the Student-t distribution. Most standard fsx s on b'jt,'stical

analysis prove that if x is a normally distributed random variable with mean
2 2

u and variance a , if x has a chi-square pdf with k degrees of freedom, and
2

if x and X are independently distributed, the function

tk 11 ) /a (35)lX2 / k] 12(5

Our reproducing the complex derivation of the chi-square pdf, or of the
Student-t pdf to be shortly introduced, serves little purpose in our primary
goal. We desire only to point out the existence and usefulness of these
special distributi~n, and refer working reliability engineers to standard
text on statistics ' for a more comprehensive discussion.
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has the Student-t distribution with k degrees of freedom. We have previously

shown that 'j, i.e., Eq. (30), is the expectation value of M and, therefore the
2 -22random variable i - has a zero mean and variance I' . Also, since no /a

has been indicated to have a X2 distribution of (n - 1) degrees of freedom and-3-

is independently distributed from M - I,

tk -- (36)
[na2/(n -)M 1) a  /2

has the Student-t distribution with (n - 1) degrees of freedom. We can write

the confidence level associated with the median value as

P{-t(6)n-I tk 2 211/21 5 (37)
[n-a/(n - 1)o

or rearranging terms

P{i jn- t(6) [ " )(X 2 } (38)

where the confidence coefficient 6 can be determined from tables of the

cumulative Student-t distribution.

Returning once again to the situation where we know a2 exactly but not

u; our best estimate as to the failure pdf of the n + I device taken from the

uniform distribution under discussion is

-2

f(x)= exp{- )} (39)
Ou(2w)1/2 u

where

;a . 11 + n1 (40)
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represents the summation of the intrinsic random variation 2 and cr 2

Employing the Student-t distribution, we can estimate the failure pdf of the

n + I device by considering

(x - )/o u
tn I  -2 2 1/2 (41)

[no /(n - 1)o Y

Since the random variable x - U is normally distributed with zero mean and

variance a2 and no2/a2 has a chi-square distribution with n - 1 degrees ofu

freedom, this expression has the Student-t dependence. We can estimate the

probability of the n + 1 device having a lifetime shorter than some specified

time by

(x -u)1cu
P{-t(6)n ;0 t fi[2(n_ IO2/ 2 }  6 (42)

n-I - 2 1/21 5(2
[no /(n -1)0

which on being rearranged gives

P{lnTnl ( - - t(s) ( +!)1/2;} - 6 (43)
n1n-1 n

The statistics of thermally accelerated aging results will now be

analyzed. For this analysis, it is convenient to rewrite the failure pdf as

f(x) 1 1
x - lnT0 - AEZ 2

o(2w)1/2 2 a

where the Arrhenius relation has been reformulated as

U - In + AEZ (45)
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The median log lifetime is a linear function of the variable (kT)- I, and the

answer to our immediate problem is provided by the well-developed simple

linear normal regression technique. Having provided the formalism in the pre-

ceding.discussion, we may rapidly present the conclusions of this analysis.

From Eq. (44), the log-likelihood function is

lnY= -n[lncJ(2w)lI2I - [Xi-lnTo - AEZi 2  (46)
2a

where the couple (Xi,Zi) represents the experimental log lifetime Xi, observed

when the device is operated at Zi. The summation is, of course, over all

devices that are introduced into the accelerated test program. In keeping

with our primary objective, we are interested in estimating the lifetime of

the n + 1 device operated at a normal temperature TN from the results of an

accelerated stress program. Determining the value of a, lnTo, and AE, which

maximizes the log likelihood function, yields the estimators

_ (x1- )(z1 - Z)
Ez 1 (47)

-)2

ln 0 X -AE Z (48)0

a 2 1 J(X -nT -EZ)2 (49)

where

- x (50)
n i

and

1 1z (51)
n
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Summations (47) through (51) are done over all experimentally observed n

failures. 
*

Assuming we know a exactly before the start of this experiment, the

estimated distribution of median log lifetime is

N~j 12 1"' - -:!2 - 7W.,Z2 l (52)

oM (
2 w ) 21a {A

where

a2ZZ n 2 (53)°K J(z Y)

The estimated pdf of the n + I device at ZN is

f(XI) 1 p EZ2 (54)
Ou(2W 1/2 ex [ 2(XN lnT° -EN2](4

a (2w11/

where

o2 02 +02 (55)
uH

The above variances can be much larger than the corresponding quantity given

in Eqs. (31) and (40) when ZN is far outside the accelerated temperature

range.

An accelerated temperature-stress experiment is not performed at random

temperatures, but usually at several specially selected temperatures.

Operating at several elevated temperatures is not only less costly, but it

*For a normal pdf, the least-squares method yields identical results.
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offers the important advantage of allowing one to evaluate the temperature-

independence of the variance. We will now consider a few special sample

distributions. Perhaps, the simplest sample distribution is a two-temperature

accelerated test with devices equally distributed between the two

temperatures. Designating the high- and low-stress conditions as ZH and ZL,

we rewrite Eqs. (47), (48), (49), (53), and (55) as

T XL XH (6
AE- Z -Z (56)

L H

lnT - L IR -&Z E (57)
0 2H

a2 2 1 1 (X (2 + I(Xi _ )1] (58)n L H

2 2 2
GM .T-(L + 1) (59)

a2 2 [1 +L(L 2 + 1)] (60)

where XL and XH are the average log lifetimes at the low and high tempera-

tures. In these equations, L represents an effective experimental lever given

by

z
zN -rzH + z )

L -N 2 L (61)1
ZL -W(Z + ZL)

N M (62)

ZL ZM
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and accounts for the increased uncertainity as one moves away from the accel-

erated temperature range. Note that for L - o the variances, a 2 and a2 ,areM U

equal to their values in the one-temperature situation. The analogy between

this experimental lever arm and a similar relation for the dependence of the

accuracy of a rifle on the ratio of firing range to barrel length is obvious.

The question naturally arises if an equal distribution of devices between

the two temperatures is statistically the most effective arrangement. Exam-

ination of the above variances shows them to be minimized for the sample

distribution

nH AIn + JBI (63)

and, of course,

nL n n (64)

where

A - (1 L) (65)

B = 1 (1 + L) (66)

The minimized variances are

a2 a-(Il - LI + 1I + LI) 2  (67)

= 02 L2  (L > 1) (68)
n

and

02 . 2[1 +1 L2 ] (L > 1) (69)u n
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From a practical engineering viewpoint, this minimization is of little value

since the effective lever arm is typically L - 6.

Another typical sample distribution is a three-temperature test in which

an equal number of components, i.e., n/3, are failed at ZH, ZM, and ZL. Our

estimated parameters are now

E - X -z (70)
L - RU

2 2(3 72am - "t-Gf + 1) (72)

a1 3 o2[ I (2+ L2 + 1)] (73)

The devices failed at the middle temperature cannot be used to estimate the

activation energy. Consequently, for typical experimental lever arms, the

middle-temperature failures contribute little to the statistical accuracy of

the extrapolated median lifetime, but does, of course, contribute to

estimating a as indicated by Eq. (49).

A uniform distribution is of interest since it approximates a situation

in which devices are stressed at many, e.g., ten equally space points along

the Z axis. The variance in this case is

2 a 2 2
a - (3L + 1) (74)

2with a related expression for a . Statistically, two-thirds of the devicesU
are effectively being wasted relative to estimating M. For any symmetric

sample distribution about ZM, the variance can be written as
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M n- (DL2 + 1) (75)

where the D-function is determined by the relative sample distribution

throughout the accelerated temperature range. The D-quantity can be thought

of as measuring how effectively the samples are distributed. The statistical

inefficiency, of course, increases as the devices are located near the center-

of-mass of the sample. It is convenient to define the statistical efficiency

of an accelerated temperature-stress test as

n = (DL2 + 1) (76)

The statistical efficiency increases as both L and D are reduced.

The chi-square pdf can be employed to estimate the uncertainty in the

estimated population variance. This analysis follows the previous one

presented for the one-temperature case except that now

2 1 j(Xt -lnx2 - EZ)2 (77)Xn-2 2 o
a

where the chi-square distribution now has n - 2 degrees of freedom. An

additional degree of freedom is lost, since at least two experimental points

at different temperatures are needed to estimate lnT and TE. The confidence
0

level is written

, a2  no2 2(i.P -' < a 4 -'- M f(X _)dx _ (78)

b a - - -

2
In evaluating the temperature-sensitivity of a , one should employ not this

equation, but Eq. (33), i.e., the confidence level at each of the various

accelerated temperatures.

We will now repeat the procedure previously discussed and apply the

Student-t distribution to determine the error associated withUN and
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from accelerated stress results vith no a priori knowledge of p or a. The

quantity

(ON -iM)/IM
t Nq (79)

_ 2/(n - 2)oZ]1/2

has a Student-t distribution, since 
1N - 'N has zero mean and variance .,

-2 2
and no /a is chi-square distributed with (n - 2) degrees of freedom.5  We,

therefore, can estimate the probability that p N will be lower than any

particular value as

PIN 4 - t(6)n 2 (nnn-. /2 -J} a 6 (80)

where a and am are defined in Eqs. (49) and (53). Since a is proportional to

a, the confidence limits for 'N can be determined. Transforming this

expression into experimental measured parameters, we have

P T x + 6EZN - t(6)n_2(o/nn)1/21 - 6 (81)

PI0 " no+Y'N -t)n-2

where

2 (xl_ -ln-T- - EEz)2 (82)
i -2 0'

is our unbiased estimator of a from accelerated temperature aging.

Our primary interest is, of course, in the probability that a randomly

selected device operating at normal temperatures will have a lifetime lower

than a preselected value. This probability can be found by considering the

relation
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t - - uEzN]/Y (83)
rl 2-/(n 2)011/2

which can be shown to have a Student-t distribution employing the same logic

as invoked several times before. We write the desired probability as

PlnT+ -n-+o +A-EZi- t()n-20[1 + _]1/2} . 6 (84)

where o is defined in Eq. (82). This relation expresses the probability that

Tn+1 will be lower than any preselected value in terms of known experimental

results. It represents the estimated average cff that should be employed in

estimating the system loss to be associated with this device and as such

represents completion of our formal statistical analysis.
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V. APPLICATION AND SUMMARY

To demonstrate the application of the preceding analysis, we could take

thermally accelerated aging results, such as those illustrated in Fig. 1, and

doggedly estimate the various probabilities of interest. We have elected not

to proceed in this sterile mode. Instead, we propose considering a very arti-

ficial, but instructive, situation. This contrived example has been selected

not only because it illustrates the employment and usefulness of the preceding

analysis, but also because it clearly shows potential pitfalls that one can

encounter in applying accelerated aging results.

Consider the problem of selecting a semiconductor component for a complex

space system. Assume that the system analyst has determined that the required

device should have an average failure rate of less than 10 FITs, i.e., 10

failures/109 hr, over the system useful life of 105 hr when the device is

operated at a junction temperature of 50*C or less. We can select the device

from six different lots, all of which have been through an accelerated

temperature-stress program. Although the thermal aging conditions for each of

these lots were different (these contrived conditions are listed in Table 1),

they all yielded the same extrapolated (50*C) median lifetime and logarithmic

variance. In particular, let us assume that the extrapolated median lifetimes

are 10 hr and that the sample distribution logarithmic standard

deviations, a i 1.0.

Based on the preceding analysis, the results of an accelerated test pro-

gram extrapolated to a given temperature must be characterized by four para-

meters - not only pN and a, but also the total number of devices in the

accelerated test and the statistical efficiency of the accelerated stress pro-

gram q. We have listed the statistical efficiency of each experiment in Table

1 with the parameter a u, which will prove useful in discussing this

situation. Both of these parameters are dependent on the device operational

junction temperature, and the values listed in Table 2 are for TN - 500C.

The probabilities that the lifetime of the device during normal operation

will be less than various preselected times, T', has been calculated employing
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Table 1. Contrived Accelerated Temperature-Aging Experiments

Extrapolated

Lot TH/nH TL/nL fla u a

1 250/16 150/16 5.27 x 10r2  1.26

2 250/16 200/ 16 8.64 x 1cr3  2.15

3 250/8 150/8 5.27 x 1cr2  1.47

4 250/8 200/8 8.64 x 1cr3  2.87

5 250/4 150/4 5.27 x 10-2  1.84

6 250/4 200/4 8.64 x 10- 3  3.93

The parameters a I a and n are calculated with application of Eqs. (60) and (76).
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Table 2. Analysis of Contrived Thermal Aging Tests

T'(hr)

Lot 6 -0.25 6-=0.10 6 -0.01 6 =0.005 6=-0.0005

0 5.10 x 106 2.77 x 10 6 9.77 x 105  7.61 x 105 3.72 x 105

1 4.23 x 10 6 1.92 x 10 6 4.52 x 105 3.13 x 105 1.01 x 105

2 2.30 x 106 5.98 x 105 5.08 x 104 2.71 x 104 3.94 x 103

3 3.62 x~ 106  1.38 x 106 2.11 x 105 1.25 x 105 2.27 x 104

4 1.37 x~ 106  2.11 x 105  5.36 x 103 1.95 x 103 6.91 x 101

5 2.67 x 106 7.06 x 105 3.08 x 104 1.09 x 104 1.73 x 102
6 5.95 x 105 3.49 x 105 4.32 x 101 4.71 6.75 x 10-4

The T' is the estimated device lifetime at T = 50*C at a confidence level
(1-6) (or, equivalently, 6 failure probabiiities at 50% confidence level).
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Eq. (84), rememberingMN =j 1-- 0- + iEZN , and are listed in Table 2. Also

included in Table 2 (as lot zero) are the estimated failure probabilities for
7A

the case where me in (I07 hr) and a - 1.00 are the exact parameters of a

lognormal failure pdf. For the reader's convenience, we display the estimated

average cff for three accelerated aging tests as well as the cff for lot zero

in Fig. 2.

The estimated cff of lot zero can, of course, be found directly from Eq.

(16) since we are assuming that we know TM and a exactly. One can calculate

the cff equally as well from Eq. (84) by allowing the sample size to become

sufficiently large. With a large sample size

t(a)n-2 t6)

and

(I + ) + 1

Under the condition of a large sample size, the confidence coefficient 6 ap-

proaches the standard normal cff.

It is readily apparent that if V = ln(10 7 hr) and a 1.0 adequately

characterized the failure pdf, the failure rate at times less than the

specified useful system life of 105 hr would be insignificant. Using the

sample distributions MN and a as the exact pN and a is perhaps the most

serious pitfall to be associated with applying accelerated temperature-aging

results. For times less than VN' the analysis of the six contrived

accelerated-aging programs indicates an average probability of failure much

higher than one estimates using PN and o as exact failure parameters, i.e.,

the lot zero case.
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The difference between the analysis of lot zero and Eq. (84) is

fundamental to our present interest. When one uses U N and a alone to

calculate the cff, one is estimating the median probability of failure at the

various operational times and not the average probability of failure as Eq.

(84) does. At 107 hr, the median and average failure probabilities are equal,

but they diverge as one goes to either shorter or longer times. The

divergence is a direct result of the uncertainties in the estimates

of v and a having a greater effect at both short and long times. The

probability curves are symmetric about UN, but since we are not interested in

lifetime greater than p N' only the lower portions are illustrated in Fig. 2.

For lots I and 2, the sample sizes are sufficiently large that for 6 >

0.005, the error in the estimated cff is caused by the uncertainity in v and

not a. In other words,

t( )30- t(6)W; 6 > 0.005

and the cffs can be approximately represented by a lognormal cff with parame-
- ln r) an a -1/2

ter UN (10 hr) and a( + /n) . Although both lots 1 and 2 have

failed the same number of devices, the uncertainity in the second lot at low

values of the cff is much greater because of its longer lever arm or, equiva-

lently, its lower statistical efficiency.

When the sample size is reduced by one-half (lots 3 and 4), the uncertain-

ties in both ItN and a are almost equally important for 0.0005 < 6 < 0.01.

Above 6 - 0.01, the uncertainty in U dominates, whereas below 0.0005, the

uncertainty in a dominates. The exact region between where the uncertainty

in U or a dominates is, of course, dependent on the relative magnitudes

of t(S)n-2 and au/a as can be clearly seen by comparing the various lots.

Both the sample size and the statistical efficiency of lots 5 and 6 are

so low that the uncertainty in their failure rates at time less than 105 hr

makes them useless for our assumed requirement. In fact, only lot I should be
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considered as meeting the requirement of less than an average of 10 FITs over

a useful system lifetime of 105 hr.

As a general rule, it appears more appropriate to assume that the esti-

mated average failure probability follows an exponential failure pdf with

A - exp(-UN) than that UN and a are the exact value of U and a. Extending

this suggestion to many different components, i.e., components from different

accelerated aging experiments, should further increase the accuracy of this

approximation. Considering that it is not difficult to calculate an effective

failure rate with the foregoing analysis when the accelerated aging conditions

are adequately characterized, the assumption of an exponential pdf should be

considered only when the thermal stress results are not properly characterized.

The results of this analysis are best summarized by emphasizing that any

accelerated temperature-aging test should be characterized by more parameters

than just the logarithmic variance of the failed sample distribution and the

extrapolated median lifetime (or, since all users will not operate at the same

junction temperature, f and 11). This is especially important when one

wishes to estimate the failure rate at times much different than the extrapolated

median lifetime. To properly estimate the average probability of failure at

times much less than U N' the total number of devices in the accelerated

temperature-aging program should be provided as well as each failure tempera-

ture. These parameters are then used to calculate the probability of failures

at low-level cff, and an estimated average failure rate is calculated. If the

average failure cff meets the system requirements, one is justified in con-

cluding that the statistical requirement has been fulfilled and one should

then turn to the consideration of potential systematic errors in applying

accelerated temperature-aging results -- a subject beyond our limited

objective.
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ABBREVIATIONS AND SYMBOLS

cff Cumulative failure function

F(x) Cumulative failure function (cff) of random variable (x)

f(x) Failure probability density function (pdf) of random variable (x)

k Boltzmann's constant

L (ZN - ZM)/(ZL - ZM )

In Natural logarithm

log Logarithm to base 10

n Total sample size in accelerated temperature stress (all failed)

ni Sample size at Ti (all failed)

pdf Probability density function

Tj Absolute "Junction" temperature

TH  Highest accelerated temperature

TL Lowest accelerated temperature

TN Normal, i.e., desired, operational temperature

t Time, random variable

t(6)k  Student-t distribution with k degrees of freedom associated with
confidence coefficient 6

Xi  In Ti

x In t, random variable

zi (kTi)

ZM  (ZH + ZL)/2

AE Activation energy of Arrhenius-dependent failure mechanism

6 Confidence coefficient

A(t) Device failure rate
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Median lifetime/log lifetime

Mean of sample distribution at Ti

UN Mean of sample distribution extrapolated to TN
aVariance/log variance

-2 2aEstimator of

"2 2
O Unbiased estimator of a

T i  "Experimental" failure time of device

Pre-exponential factor of Arrhenius-dependent failure mechanism
0
2 Chi-squares distribution with k degrees of freedom

Xi
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LABORATORY OPIRATIONS

The Laboratory Operations of The Aerospace Corporation ts conducting

experimental and theoretical investigations necessary for the evaluation and

application of scientific advances to now military concepts and system. Ver-

satility and flexibility have been developed to a high degree by the laborato-

ry personnel in dealing vith the aM problem encountered in the Natio's

rapidly developing apace ystem. Expertise in the latest scientific develop-

monte is vital to the accoupliaehent of tasks related to these problems. The

laboratories that contribute to this research are:

AW =physics Ltboraor: Aerodynamics; fluid dynamics; plasmdyamics;

cheisc et engineering mechanice; flight dynemice; host transfer;
high-power gas lseors. continuous and pulsed, I. visible. UV; laser physics;
laser resonator optics; laser effects and cowtemmeemres.

Chemistr &adhsc aortr:Xmekei ecim optical beck-
*• grounds; radiative transfer end awoepheric tamemiotm atheul end state-

specific reaction rates in rocket plans; chemical thsmdymmies and poopal-
*ion chemistry; laser Isotope separation; chemistry and physics of perticlee;
space environmental and contamination effects n spacecraft uterials; lubrice-
tin; surface chemistry of insulatore nd condtosl cetbef saterials; son-
sor material &and sensor optics; applied laser opetreocepy; sta frqueac
etandarde; pollution and toxic mterials sattoring.

tlectrnnic Research Laboratory: glactrommatic theory ad propagatiom
phenomena; micrnua and semiconductor devicees and integrated circuits; qWS-
tum electronics, laers, and electro-optits; tamatim ocieatc. applied
electronics, superconducting and electronic device physics: millimster-imve
and far-infrared technology.

Materials Sciences Laboratory: Dsvelopmsnt of am materils; commit@
materlIs; graphite d ceramics; polymeric mteriale; Wapon effects end
hardened materials; materials for aloctroafi devices; divemnsailly stable
materials; cebmical and structural anlyses; strees corroionm fatinue of
metals.

Space Scn LaboratorY: sosopheric and ionospheric physic, rada-
tion fIo the atoephere, density am cposition of the atmeepiwre, auroras
and airsloq;. nagaetopheric physic, conmc rays. gsuerstiem and propagation
of plasm u-es in the magetosphere; solar phys ies, -rey astronommi tm effect
of nuclear explosion@, ma etic storm, ad solar activity en the earthts
atmospbere, iomo pbero and geto pbo; dh effects of optical, olsctrovig ,
netic, and partislate radiation in speneM os systei.

Ut

-J

LEe.... '



ILMEI


